MindsDB - The Twelve Labs handler
Summary: The Twelve Labs handler for MindsDB allows you to search and summarize video content directly within MindsDB, streamlining the integration of these features into your applications.
Description: This guide outlines how you can use the handler and how the handler interfaces with the Twelve Labs Video Understanding Platform to combine Twelve Labs' state-of-the-art foundation models for video understanding with MindsDB's platform for building customized AI solutions.
Step-by-step guide: Our blog post, Build a Powerful Video Summarization Tool with Twelve Lans, MindsDB, and Slack, walks you through the steps required to configure the Twelve Labs integration in MindsDB, deploy the Twelve Labs model for summarization within MindsDB, and automate the whole flow through a Slack bot that will periodically post the video summarizations as announcements.
GitHub: Twelve Labs Handler.
Use the handler
This section assumes the following:
- You have an API key. To retrieve your API key, go to the Dashboard page and select the Copy icon to the right of the key to copy it to your clipboard.
- You have a running MindsDB database inside of a Docker container. If not, see the Docker for MindsDB section of the MindsDB documentation
Typically, the steps for using the handler are as follows:
-
Install the required dependencies inside the Docker container:
pip install mindsdb[twelve_labs]
-
Open the MindsDB SQL Editor.
-
Create an ML engine. Use the
CREATE ML_ENGINE
statement, replacing the placeholders surrounded by<>
with your values:
-
CREATE ML_ENGINE <YOUR_ENGINE_NAME> from twelve_labs USING twelve_labs_api_key = '<YOUR_API_KEY>'
The example below creates an ML engine named
twelve_labs_engine
:CREATE ML_ENGINE twelve_labs_engine from twelve_labs USING twelve_labs_api_key = 'tlk_111'
-
Create a model. Use the
CREATE_MODEL
statement to create a model. ThePREDICT
clause specifies the name of the column that will contain the results of the task. TheUSING
clause specifies the parameters for the model. The parameters depend on the task you want to perform. The available tasks aresearch
andsummarization
, and the parameters for each task are described in the Creating Models section of the handler's GitHub Readme file.
The example below creates a model for thesearch
task:CREATE MODEL mindsdb.twelve_labs_search PREDICT search_results USING engine = 'twelve_labs_engine', task = 'search', engine_id = 'marengo2.6', index_name = 'index_1', index_options = ['visual', 'conversation', 'text_in_video', 'logo'], video_urls = ['https://.../video_1.mp4', 'https://.../video_2.mp4'], search_options = ['visual', 'conversation', 'text_in_video', 'logo'], search_query_column = 'query';
The example below creates a model for the
summarization
task:CREATE MODEL mindsdb.twelve_labs_summarization PREDICT summarization_results USING engine = 'twelve_labs_engine', task = 'summarization', engine_id = 'pegasus1', index_name = 'index_1', index_options = ['visual', 'conversation'], video_urls = ['https://.../video_1.mp4', 'https://.../video_2.mp4'], summarization_type = 'summary';
-
(Optional) Check the status of the video indexing process. The Twelve Labs Video Understanding Platform requires some time to index videos. You can search or summarize your videos only after the indexing process is complete. Use the
DESCRIBE
statement to check the status of the indexing process, replacing the placeholder surrounded by<>
with your the name your model:DESCRIBE mindsdb.<YOUR_MODEL_NAME>;
The example below checks the status of a model named
twelve_labs_summarization
:DESCRIBE mindsdb.twelve_labs_summarization;
You should see the status as
complete
in theSTATUS
column. In case of an error, check theERROR
column, which contains detailed information about the error. -
Retrieve the identifiers of the indexed videos. Perform this step if you want to summarize a video. To retrieve the identifiers, use the
DESCRIBE
statement on theindexed_videos
table of your model, replacing the placeholder surrounded by<>
with the name of your model:DESCRIBE mindsdb.<YOUR_MODEL_NAME>.indexed_videos;
The example below retrieves the identifiers of the videos uploaded to a model named
twelve_labs_summarization
:DESCRIBE mindsdb.twelve_labs_summarization.indexed_videos;
-
Make predictions. Use the
SELECT
statement to make predictions using the model created in the previous step. TheWHERE
clause specifies the condition for the prediction. The condition depends on the task you want to perform. The available tasks aresearch
andsummarization
, and the conditions for each task are described in the Making Predictions section of the handler's GitHub Readme file:
The example below performs a search request. Ensure you replace the placeholder surrounded by<>
with your querySearch:
In the SQL query below, ensure you replace the placeholders surrounded by<>
with your values:SELECT * FROM mindsdb.<YOUR_MODEL_NAME> WHERE query = '<YOUR_QUERY>';
The example below makes predictions for the search task using a model named
twelve_labs_search
:SELECT * FROM mindsdb.twelve_labs_search WHERE query = 'Soccer player scoring a goal';
Summarize:
In the SQL query below, ensure you replace the placeholders surrounded by
<>
with your values:SELECT * FROM mindsdb.<YOUR_MODEL_NAME> WHERE video_id = '<YOUR_VIDEO_ID>';
The example below makes predictions for the summarization task using a model named
twelve_labs_summarization
:SELECT * FROM mindsdb.twelve_labs_summarization WHERE video_id = '660bfa6766995fbd9fd662ee';
Integration with Twelve Labs
For brevity, the sections below outline the key components for integrating MindsDB with the Twelve Labs Video Understanding Platform:
- Initialize a client
- Create indexes
- Upload videos
- Perform downstream tasks such as search or classification.
For all the components, refer to the Twelve Labs Handler page on GitHub.
Initialize a client
The constructor sets up a new TwelveLabsAPIClient
object that establishes a connection to the Twelve Labs Video Understanding Platform:
def __init__(self, api_key: str, base_url: str = None):
"""
The initializer for the TwelveLabsAPIClient.
Parameters
----------
api_key : str
The Twelve Labs API key.
base_url : str, Optional
The base URL for the Twelve Labs API. Defaults to the base URL in the Twelve Labs handler settings.
"""
self.api_key = api_key
self.headers = {
'Content-Type': 'application/json',
'x-api-key': self.api_key
}
self.base_url = base_url if base_url else twelve_labs_handler_config.BASE_URL
Create indexes
To create indexes, the create_index
method invokes the POST
method of the /indexes
endpoint:
def create_index(self, index_name: str, index_options: List[str], engine_id: Optional[str] = None, addons: Optional[List[str]] = None) -> str:
"""
Create an index.
Parameters
----------
index_name : str
Name of the index to be created.
index_options : List[str]
List of that specifies how the platform will process the videos uploaded to this index.
engine_id : str, Optional
ID of the engine. If not provided, the default engine is used.
addons : List[str], Optional
List of addons that should be enabled for the index.
Returns
-------
str
ID of the created index.
"""
# TODO: change index_options to engine_options?
# TODO: support multiple engines per index?
body = {
"index_name": index_name,
"engines": [{
"engine_name": engine_id if engine_id else twelve_labs_handler_config.DEFAULT_ENGINE_ID,
"engine_options": index_options
}],
"addons": addons,
}
result = self._submit_request(
method="POST",
endpoint="/indexes",
data=body,
)
logger.info(f"Index {index_name} successfully created.")
return result['_id']
Upload videos
To upload videos to the Twelve Labs Video Understanding Platform and index them, the handler invokes the POST method of the /tasks
endpoint:
def create_video_indexing_tasks(self, index_id: str, video_urls: List[str] = None, video_files: List[str] = None) -> List[str]:
"""
Create video indexing tasks.
Parameters
----------
index_id : str
ID of the index.
video_urls : List[str], Optional
List of video urls to be indexed. Either video_urls or video_files should be provided. This validation is handled by TwelveLabsHandlerModel.
video_files : List[str], Optional
List of video files to be indexed. Either video_urls or video_files should be provided. This validation is handled by TwelveLabsHandlerModel.
Returns
-------
List[str]
List of task IDs created.
"""
task_ids = []
if video_urls:
logger.info("video_urls has been set, therefore, it will be given precedence.")
logger.info("Creating video indexing tasks for video urls.")
for video_url in video_urls:
task_ids.append(
self._create_video_indexing_task(
index_id=index_id,
video_url=video_url
)
)
elif video_files:
logger.info("video_urls has not been set, therefore, video_files will be used.")
logger.info("Creating video indexing tasks for video files.")
for video_file in video_files:
task_ids.append(
self._create_video_indexing_task(
index_id=index_id,
video_file=video_file
)
)
return task_ids
def _create_video_indexing_task(self, index_id: str, video_url: str = None, video_file: str = None) -> str:
"""
Create a video indexing task.
Parameters
----------
index_id : str
ID of the index.
video_url : str, Optional
URL of the video to be indexed. Either video_url or video_file should be provided. This validation is handled by TwelveLabsHandlerModel.
video_file : str, Optional
Path to the video file to be indexed. Either video_url or video_file should be provided. This validation is handled by TwelveLabsHandlerModel.
Returns
-------
str
ID of the created task.
"""
body = {
"index_id": index_id,
}
file_to_close = None
if video_url:
body['video_url'] = video_url
elif video_file:
import mimetypes
# WE need the file open for the duration of the request. Maybe simplify it with context manager later, but needs _create_video_indexing_task re-written
file_to_close = open(video_file, 'rb')
mime_type, _ = mimetypes.guess_type(video_file)
body['video_file'] = (file_to_close.name, file_to_close, mime_type)
result = self._submit_multi_part_request(
method="POST",
endpoint="/tasks",
data=body,
)
if file_to_close:
file_to_close.close()
task_id = result['_id']
logger.info(f"Created video indexing task {task_id} for {video_url if video_url else video_file} successfully.")
# update the video title
video_reference = video_url if video_url else video_file
task = self._get_video_indexing_task(task_id=task_id)
self._update_video_metadata(
index_id=index_id,
video_id=task['video_id'],
metadata={
"video_reference": video_reference
}
)
return task_id
Once the video has been uploaded to the platform, the handler monitors the indexing process using the GET method of the /tasks/{task_id}
endpoint:
def poll_for_video_indexing_tasks(self, task_ids: List[str]) -> None:
"""
Poll for video indexing tasks to complete.
Parameters
----------
task_ids : List[str]
List of task IDs to be polled.
Returns
-------
None
"""
for task_id in task_ids:
logger.info(f"Polling status of video indexing task {task_id}.")
is_task_running = True
while is_task_running:
task = self._get_video_indexing_task(task_id=task_id)
status = task['status']
logger.info(f"Task {task_id} is in the {status} state.")
wait_durtion = task['process']['remain_seconds'] if 'process' in task else twelve_labs_handler_config.DEFAULT_WAIT_DURATION
if status in ('pending', 'indexing', 'validating'):
logger.info(f"Task {task_id} will be polled again in {wait_durtion} seconds.")
time.sleep(wait_durtion)
elif status == 'ready':
logger.info(f"Task {task_id} completed successfully.")
is_task_running = False
else:
logger.error(f"Task {task_id} failed with status {task['status']}.")
# TODO: update Exception to be more specific
raise Exception(f"Task {task_id} failed with status {task['status']}.")
logger.info("All videos indexed successffully.")
Perform downstream tasks
The handler supports the following downstream tasks - search and summarize videos. See the sections below for details.
Search videos
To perform search requests, the handler invokes the POST
method of the /search
endpoint:
def search_index(self, index_id: str, query: str, search_options: List[str]) -> Dict:
"""
Search an index.
Parameters
----------
index_id : str
ID of the index.
query : str
Query to be searched.
search_options : List[str]
List of search options to be used.
Returns
-------
Dict
Search results.
"""
body = {
"index_id": index_id,
"query": query,
"search_options": search_options
}
data = []
result = self._submit_request(
method="POST",
endpoint="/search",
data=body,
)
data.extend(result['data'])
while 'next_page_token' in result['page_info']:
result = self._submit_request(
method="GET",
endpoint=f"/search/{result['page_info']['next_page_token']}"
)
data.extend(result['data'])
logger.info(f"Search for index {index_id} completed successfully.")
return data
Summarize videos
To summarize videos, the handler invokes the POST
method of the summarize
endpoint:
def summarize_videos(self, video_ids: List[str], summarization_type: str, prompt: str) -> Dict:
"""
Summarize videos.
Parameters
----------
video_ids : List[str]
List of video IDs.
summarization_type : str
Type of the summary to be generated. Supported types are 'summary', 'chapter' and 'highlight'.
prompt: str
Prompt to be used for the Summarize task
Returns
-------
Dict
Summary of the videos.
"""
results = []
results = [self.summarize_video(video_id, summarization_type, prompt) for video_id in video_ids]
logger.info(f"Summarized videos {video_ids} successfully.")
return results
def summarize_video(self, video_id: str, summarization_type: str, prompt: str) -> Dict:
"""
Summarize a video.
Parameters
----------
video_id : str
ID of the video.
summarization_type : str
Type of the summary to be generated. Supported types are 'summary', 'chapter' and 'highlight'.
prompt: str
Prompt to be used for the Summarize task
Returns
-------
Dict
Summary of the video.
"""
body = {
"video_id": video_id,
"type": summarization_type,
"prompt": prompt
}
result = self._submit_request(
method="POST",
endpoint="/summarize",
data=body,
)
logger.info(f"Video {video_id} summarized successfully.")
return result
Next steps
After reading this page, you have several options:
- Use the handler: Inspect the Twelve Labs Handler page on GitHub to better understand its features and start using it in your applications.
- Explore further: Try the applications built by the community or our sample applications to get more insights into the Twelve Labs Video Understanding Platform's diverse capabilities and learn more about integrating the platform into your applications.
Updated 8 months ago