Search

This quickstart guide provides a simplified introduction to searching video content using the TwelveLabs Video Understanding Platform. It includes:

  • A basic working example
  • Minimal implementation details
  • Core parameters for common use cases

For a comprehensive guide, see the Search page.

Prerequisites

  • To use the platform, you need an API key:

    1

    If you don’t have an account, sign up for a free account.

    2

    Go to the API Keys page.

    3

    Select the Copy icon next to your key.

  • Depending on the programming language you are using, install the TwelveLabs SDK by entering one of the following commands:

    $pip install twelvelabs
  • Your video files must meet the format requirements.

Starter code

Copy and paste the code below to make a search request, replacing the placeholders surrounded by <> with your values.

1from twelvelabs import TwelveLabs
2from twelvelabs.indexes import IndexesCreateRequestModelsItem
3from twelvelabs.tasks import TasksRetrieveResponse
4
5# 1. Initialize the client
6client = TwelveLabs(api_key="<YOUR_API_KEY>")
7
8# 2. Create an index
9index = client.indexes.create(
10 index_name="<YOUR_INDEX_NAME>",
11 models=[
12 IndexesCreateRequestModelsItem(
13 model_name="marengo3.0",
14 model_options=["visual", "audio"]
15 )
16 ]
17)
18if index.id is None:
19 raise RuntimeError("Failed to create an index.")
20print(f"Created index: id={index.id}")
21
22# 3. Upload a video
23task = client.tasks.create(
24 index_id=index.id,
25 video_url="<YOUR_VIDEO_URL>" # Or use video_file to upload a file from the local file system
26 )
27print(f"Created task: id={task.id}")
28
29# 4. Monitor the indexing process
30def on_task_update(task: TasksRetrieveResponse):
31 print(f" Status={task.status}")
32task = client.tasks.wait_for_done(task_id=task.id, callback=on_task_update)
33if task.status != "ready":
34 raise RuntimeError(f"Indexing failed with status {task.status}")
35print(
36 f"Upload complete. The unique identifier of your video is {task.video_id}.")
37
38# 5. Perform a search request
39search_pager = client.search.query(
40 index_id=index.id, query_text="<YOUR_QUERY>", search_options=["visual", "audio"],)
41
42# 6. Process the search results
43print("Search results:")
44for clip in search_pager:
45 print(
46 f" video_id {clip.video_id} rank={clip.rank} start={clip.start} end={clip.end}"
47 )

Step-by-step guide

1

Import the SDK and initialize the client

Create a client instance to interact with the TwelveLabs Video Understanding Platform.

2

Create an index

Indexes store and organize your video data, allowing you to group related videos. Create one before uploading videos. See the Indexes page for more details.

3

Upload videos

To perform any downstream tasks, you must first upload your videos, and the platform must finish indexing them.

4

Monitor the indexing process

The platform requires some time to index videos. Check the status of the video indexing task until it’s completed.

5

Perform searches

Search the videos within the specified index using natural language to find video segments matching specific keywords or phrases.

6

Process the search results

This example prints the search results to the standard output.