Deprecation notice
The Classify API will be deprecated on Feb 28, 2025.
Recommended alternative: Update to the 1.3 version of the API and use the Pegasus video understanding model to classify videos.
Resources: Migration guide > Use Pegasus to classify videos.
The resources.Classify
class provides methods to classify a set of videos or all the videos within an index.
Methods
Classify a set of videos
Description: This method classifies a set of videos based on the provided parameters and returns the first page of results.
Function signature and example:
def videos(
self,
video_ids: List[str],
options: List[Union[str, Literal["visual", "conversation", "text_in_video"]]],
classes: List[models.ClassifyClassParams],
*,
conversation_option: Optional[Union[str, Literal["semantic", "exact_match"]]] = "semantic",
page_limit: Optional[int] = None,
include_clips: Optional[bool] = None,
threshold: Optional[Dict[str, Any]] = None,
show_detailed_score: Optional[bool] = None,
**kwargs
) -> models.ClassifyPageResult
CLASSES = [
{
"name": "DanceTok",
"prompts": [
"Dance tutorial",
"Dance group",
"Dance competition"
]
},
{
"name": "CookTok",
"prompts": [
"Cooking tutorial",
"Cooking ustensils review"
]
}
]
def print_classify_page_result(result):
print("Classification results:")
for video_data in result.data:
print_classify_video_data(video_data)
print("\nPage information:")
print_token_page_info(result.page_info)
def print_classify_video_data(video_data):
print(f"Video ID: {video_data.video_id}")
for class_data in video_data.classes:
print_classify_class(class_data)
print() # Add a blank line between videos
def print_classify_class(class_data):
print(f" Class name: {class_data.name}")
print(f" Score: {class_data.score}")
print(f" Duration ratio: {class_data.duration_ratio}")
if class_data.clips:
print(" Clips:")
for clip in class_data.clips:
print_classify_clip(clip)
def print_classify_clip(clip):
print(f" Start: {clip.start}")
print(f" End: {clip.end}")
print(f" Score: {clip.score}")
print(f" Option: {clip.option}")
print(f" Prompt: {clip.prompt}")
print(f" Thumbnail URL: {clip.thumbnail_url or 'N/A'}")
if clip.detailed_scores:
print_classify_detailed_score(clip.detailed_scores)
def print_classify_detailed_score(detailed_score):
print(f" Max score: {detailed_score.max_score}")
print(f" Avg score: {detailed_score.avg_score}")
print(f" Normalized score: {detailed_score.normalized_score}")
def print_token_page_info(page_info):
print(f"Limit per page: {page_info.limit_per_page}")
print(f"Total results: {page_info.total_results}")
print(f"Page expired at: {page_info.page_expired_at}")
print(f"Next page token: {page_info.next_page_token or 'N/A'}")
print(f"Previous page token: {page_info.prev_page_token or 'N/A'}")
VIDEO_IDS = ["VIDEO_ID_1", "VIDEO_ID_2", "VIDEO_ID_3"]
result = client.classify.videos(
video_ids=VIDEO_IDS,
options=["visual", "conversation"],
classes=CLASSES,
include_clips=True,
show_detailed_score=True,
page_limit=1
)
print_classify_page_result(result)
Parameters:
Name | Type | Required | Description |
---|---|---|---|
video_ids | List[str] | Yes | A list containing the unique identifiers of the videos that you want to classify |
options | List[Union[str, Literal["visual", "conversation", "text_in_video"]]] | Yes | A list that specifies the sources of information the platform uses when it categorizes a video. |
classes | List[models.ClassifyClassParams] | Yes | An array of ClassifyClassParams objects containing the names and the definitions of entities or actions that the platform must identify. |
conversation_option | Optional[Union[str, Literal["semantic", "exact_match"]]] | No | Specifies the type of match the platform will perform. |
page_limit | Optional[int] | No | The maximum number of results per page. |
include_clips | Optional[bool] | No | Set this parameter to true to retrieve detailed information about each matching video clip. |
threshold | Optional[Dict[str, Any]] | No | Thresholds for different classification options. |
show_detailed_score | Optional[bool] | No | Whether to show detailed scores in the result. |
**kwargs | dict | No | Additional keyword arguments for the request. |
Return value: Returns a models.ClassifyPageResult
object containing the classification results.
API Reference: For a description of each field in the request and response, see the Classify a set of videos page.
Related guides:
Classify all the videos within an index
Description: This method classifies all the videos within a specific index based on the provided parameters and returns the first page of results.
Function signature and example:
def index(
self,
index_id: str,
options: List[Union[str, Literal["visual", "conversation", "text_in_video"]]],
classes: List[models.ClassifyClassParams],
*,
conversation_option: Optional[Union[str, Literal["semantic", "exact_match"]]] = "semantic",
page_limit: Optional[int] = None,
include_clips: Optional[bool] = None,
threshold: Optional[Dict[str, Any]] = None,
show_detailed_score: Optional[bool] = None,
**kwargs
) -> models.ClassifyPageResult
CLASSES = [
{
"name": "DanceTok",
"prompts": [
"Dance tutorial",
"Dance group",
"Dance competition"
]
},
{
"name": "CookTok",
"prompts": [
"Cooking tutorial",
"Cooking ustensils review"
]
}
]
def print_classify_page_result(result):
print("Classification results:")
for video_data in result.data:
print_classify_video_data(video_data)
print("\nPage information:")
print_token_page_info(result.page_info)
def print_classify_video_data(video_data):
print(f"Video ID: {video_data.video_id}")
for class_data in video_data.classes:
print_classify_class(class_data)
print() # Add a blank line between videos
def print_classify_class(class_data):
print(f" Class name: {class_data.name}")
print(f" Score: {class_data.score}")
print(f" Duration ratio: {class_data.duration_ratio}")
if class_data.clips:
print(" Clips:")
for clip in class_data.clips:
print_classify_clip(clip)
def print_classify_clip(clip):
print(f" Start: {clip.start}")
print(f" End: {clip.end}")
print(f" Score: {clip.score}")
print(f" Option: {clip.option}")
print(f" Prompt: {clip.prompt}")
print(f" Thumbnail URL: {clip.thumbnail_url or 'N/A'}")
if clip.detailed_scores:
print_classify_detailed_score(clip.detailed_scores)
def print_classify_detailed_score(detailed_score):
print(f" Max score: {detailed_score.max_score}")
print(f" Avg score: {detailed_score.avg_score}")
print(f" Normalized score: {detailed_score.normalized_score}")
def print_token_page_info(page_info):
print(f"Limit per page: {page_info.limit_per_page}")
print(f"Total results: {page_info.total_results}")
print(f"Page expired at: {page_info.page_expired_at}")
print(f"Next page token: {page_info.next_page_token or 'N/A'}")
print(f"Previous page token: {page_info.prev_page_token or 'N/A'}")
result = client.classify.index(
index_id="<YOUR_INDEX_ID>",
options=["visual", "conversation"],
classes=CLASSES,
include_clips=True,
show_detailed_score=True,
page_limit=1
)
print_classify_page_result(result)
Name | Type | Required | Description |
---|---|---|---|
index_id | str | Yes | The unique identifier of the index containing the videos you want to classify. |
options | List[Union[str, Literal["visual", "conversation", "text_in_video"]]] | Yes | An array that specifies the sources of information the platform uses when it categorizes a video. |
classes | List[models.ClassifyClassParams] | Yes | An array of ClassifyClassParams objects containing the names and the definitions of entities or actions that the platform must identify. |
conversation_option | Optional[Union[str, Literal["semantic", "exact_match"]]] | No | Specifies the type of match the platform will perform. |
page_limit | Optional[int] | No | The maximum number of results per page. |
include_clips | Optional[bool] | No | Set this parameter to true to retrieve detailed information about each matching video clip. |
threshold | Optional[Dict[str, Any]] | No | Thresholds for different classification options. |
show_detailed_score | Optional[bool] | No | Whether to show detailed scores in the result. |
**kwargs | dict | No | Additional keyword arguments for the request. |
Return value: Returns a models.ClassifyPageResult
object containing the classification results.
API Reference: For a description of each field in the request and response, see the Classify all the videos within an index page.
Related guides:
Retrieve a specific page of results
Description: This method retrieves a specific page of results. This method provides direct pagination. Choose it mainly when the total number of items is manageable, or you must fetch a single page of results.
Function signature and example:
def by_page_token(
self,
page_token: str,
**kwargs
) -> models.ClassifyPageResult
def print_classify_page_result(result):
print("Classification results:")
for video_data in result.data:
print_classify_video_data(video_data)
print("\nPage information:")
print_token_page_info(result.page_info)
def print_classify_video_data(video_data):
print(f"Video ID: {video_data.video_id}")
for class_data in video_data.classes:
print_classify_class(class_data)
print() # Add a blank line between videos
def print_classify_class(class_data):
print(f" Class name: {class_data.name}")
print(f" Score: {class_data.score}")
print(f" Duration ratio: {class_data.duration_ratio}")
if class_data.clips:
print(" Clips:")
for clip in class_data.clips:
print_classify_clip(clip)
def print_classify_clip(clip):
print(f" Start: {clip.start}")
print(f" End: {clip.end}")
print(f" Score: {clip.score}")
print(f" Option: {clip.option}")
print(f" Prompt: {clip.prompt}")
print(f" Thumbnail URL: {clip.thumbnail_url or 'N/A'}")
if clip.detailed_scores:
print_classify_detailed_score(clip.detailed_scores)
def print_classify_detailed_score(detailed_score):
print(f" Max score: {detailed_score.max_score}")
print(f" Avg score: {detailed_score.avg_score}")
print(f" Normalized score: {detailed_score.normalized_score}")
def print_token_page_info(page_info):
print(f"Limit per page: {page_info.limit_per_page}")
print(f"Total results: {page_info.total_results}")
print(f"Page expired at: {page_info.page_expired_at}")
print(f"Next page token: {page_info.next_page_token or 'N/A'}")
print(f"Previous page token: {page_info.prev_page_token or 'N/A'}")
result = client.classify.by_page_token("<YOUR_PAGE_TOKEN>")
print_classify_page_result(result)
Parameters:
Name | Type | Required | Description |
---|---|---|---|
pageToken | str | Yes | A token that identifies the page to retrieve. |
**kwargs | dict | No | Additional keyword arguments for the request. |
Return value: Returns a models.ClassifyPageResult
object containing the classification results for the specified page.
API Reference: For a description of each field in the request and response, see the Retrieve a specific page of results page.
Related guides:
Iterative pagination
If your application must retrieve a large number of items, use iterative pagination. To retrieve the first page of results, invoke the index
or videos
methods of the classify
object. To retrieve subsequent pages of results, use the iterator protocol.
CLASSES = [
{
"name": "DanceTok",
"prompts": [
"Dance tutorial",
"Dance group",
"Dance competition"
]
},
{
"name": "CookTok",
"prompts": [
"Cooking tutorial",
"Cooking ustensils review"
]
}
]
def print_classify_page_result(result):
print("Classification results:")
data = getattr(result, 'data', result)
if isinstance(data, list):
for video_data in data:
print_classify_video_data(video_data)
else:
print_classify_video_data(data)
def print_classify_video_data(video_data):
print(f"Video ID: {video_data.video_id}")
for class_data in video_data.classes:
print_classify_class(class_data)
print() # Add a blank line between videos
def print_classify_class(class_data):
print(f" Class name: {class_data.name}")
print(f" Score: {class_data.score}")
print(f" Duration ratio: {class_data.duration_ratio}")
if class_data.clips:
print(" Clips:")
for clip in class_data.clips:
print_classify_clip(clip)
def print_classify_clip(clip):
print(f" Start: {clip.start}")
print(f" End: {clip.end}")
print(f" Score: {clip.score}")
print(f" Option: {clip.option}")
print(f" Prompt: {clip.prompt}")
print(f" Thumbnail URL: {clip.thumbnail_url or 'N/A'}")
if clip.detailed_scores:
print_classify_detailed_score(clip.detailed_scores)
def print_classify_detailed_score(detailed_score):
print(f" Max score: {detailed_score.max_score}")
print(f" Avg score: {detailed_score.avg_score}")
print(f" Normalized score: {detailed_score.normalized_score}")
result = client.classify.index(
index_id="<YOUR_INDEX_ID>",
options=["visual", "conversation"],
classes=CLASSES,
include_clips=True,
show_detailed_score=True,
page_limit=1
)
print_classify_page_result(result)
page_number = 2
while True:
try:
print(f"Page {page_number}")
print_classify_page_result(next(result))
page_number += 1
except StopIteration:
break
print("No more results.")